On the Semantics of Simple Contrapositive Assumption-Based Argumentation Frameworks

Jesse Heyninck¹ and Ofer Arieli²

Institute of Philosophy II, Ruhr University Bochum, Germany

School of Computer Science, The Academic College of Tel-Aviv, Israel

CLAR 2018

¹Supported by the Sofja Kovalevskaja award of the Alexander von Humboldt-Foundation, funded by the German Ministry for Education and Research

²Supported by the Israel Science Foundation (grant number 817/15) = \sim

The Plan

Simple Contrapositive Assumption-Based Frameworks

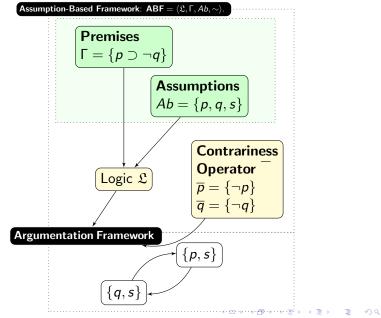
Preferential and Stable Semantics

The Grounded Semantics A More Plausible Case

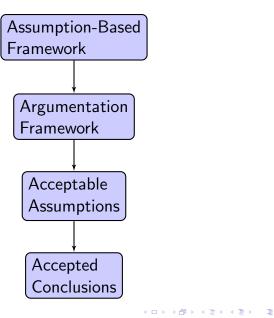
Preferential Entailments

Outlook

Assumption-Based Argumentation



The Argumentation Pipeline



4 / 34

Logic

Definition

A (propositional) *logic* for a language \mathcal{L} is a pair $\mathfrak{L} = \langle \mathcal{L}, \vdash \rangle$, where \vdash is a consequence relation for \mathcal{L} satisfying the following conditions:

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

5/34

- *Reflexivity*: if $\psi \in \Gamma$ then $\Gamma \vdash \psi$.
- Monotonicity: if $\Gamma \vdash \psi$ and $\Gamma \subseteq \Gamma'$, then $\Gamma' \vdash \psi$.
- *Transitivity*: if $\Gamma \vdash \psi$ and $\Gamma', \psi \vdash \phi$ then $\Gamma, \Gamma' \vdash \phi$.

Connectives

Definition

We shall assume that the language \mathcal{L} contains at least the following connectives:

- ▶ a \vdash -negation \neg , satisfying: $p \not\vdash \neg p$ and $\neg p \not\vdash p$ (for every atomic p)
- ▶ a \vdash -conjunction \land , satisfying: $\Gamma \vdash \psi \land \phi$ iff $\Gamma \vdash \psi$ and $\Gamma \vdash \phi$
- ► a \vdash -disjunction \lor , satisfying: $\Gamma, \phi \lor \psi \vdash \sigma$ iff $\Gamma, \phi \vdash \sigma$ and $\Gamma, \psi \vdash \sigma$
- ► a \vdash -implication \supset , satisfying: $\Gamma, \phi \vdash \psi$ iff $\Gamma \vdash \phi \supset \psi$.
- ▶ a \vdash -*falsity* F, satisfying: F $\vdash \psi$ for every formula ψ .

Some Conditions on Logics

Definition

- ▶ Θ is \vdash -inconsistent if $\Theta \vdash F$.
- ▶ A logic $\mathfrak{L} = \langle \mathcal{L}, \vdash \rangle$ is explosive, if for every $\psi \in \mathcal{L}$, the set { $\psi, \neg \psi$ } is \vdash -inconsistent.
- We say that L is contrapositive, if for every Γ ∪ {ψ} ⊆ L it holds that:
 - $\Gamma \vdash \neg \psi$ *iff*:
 - $\psi = F$, or
 - for every $\phi \in \Gamma$ we have that $\Gamma \setminus \{\phi\}, \psi \vdash \neg \phi$.

Assumption-based framework

Definition

An assumption-based framework is a tuple $\mathsf{ABF} = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$ where:

- $\mathfrak{L} = \langle \mathcal{L}, \vdash \rangle$ is a propositional Tarskian logic
- Γ (the strict assumptions) is a ⊢-consistent set of L-formulas, and
- ► Ab (the candidate/defeasible assumptions)(assumed to be nonempty),
- ► ~: $Ab \to \wp(\mathcal{L})$ is a contrariness operator (such that for every $\psi \in Ab \setminus \{F\}$ it holds that $\psi \not\vdash \bigwedge \sim \psi$ and $\bigwedge \sim \psi \not\vdash \psi$).

Simple Contrapositive ABF

Definition

A simple contrapositive ABF is an assumption-based framework $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$, where:

• £ is an explosive and contrapositive logic, and,

$$\blacktriangleright \sim \psi = \{\neg \psi\}.$$

Attacks

Definition

Let $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$ be an assumption-based framework, $\Delta, \Theta \subseteq Ab$, and $\psi \in Ab$.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

10/34

- Δ attacks ψ iff Γ , $\Delta \vdash \phi$ for some $\phi \in \sim \psi$.
- Δ attacks Θ if Δ attacks some $\psi \in \Theta$.

Example Let $\mathfrak{L} = \mathsf{CL}$, $\Gamma = \{p \supset \neg s\}$, and $Ab = \{p, s, t\}$.

$$\{s\}$$
 $\{p\}$ $\{t\}$

Example Let $\mathfrak{L} = \mathsf{CL}$, $\Gamma = \{p \supset \neg s\}$, and $Ab = \{p, s, t\}$.

$$\{s\} \longleftrightarrow \{p\} \qquad \{t\}$$

Argumentation Semantics

Definition ([3])

Let $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$ and $\Delta \subseteq Ab$. We say that:

- Δ is closed if $\Delta = Ab \cap Cn_{\vdash}(\Gamma \cup \Delta)$.
- Δ is conflict-free iff there is no $\Delta' \subseteq \Delta$ that attacks Δ .
- Δ is naive iff it is closed and maximally conflict-free.
- ▲ defends a set Δ' ⊆ Ab iff for every closed set Θ that attacks Δ' there is Δ" ⊆ Δ that attacks Θ.
- Δ is admissible iff it is closed, conflict-free, and defends every $\Delta' \subseteq \Delta$.
- Δ is complete iff it is admissible and contains every Δ' ⊆ Ab that it defends.
- Δ is grounded iff it is minimally complete.
- Δ is preferred iff it is maximally admissible.
- ► Δ is stable iff it is closed, conflict-free, and attacks every $\psi \in Ab \setminus \Delta$.

Argumentation Semantics

Definition ([3])

Let $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$ and $\Delta \subseteq Ab$. We say that:

- Δ is closed if $\Delta = Ab \cap Cn_{\vdash}(\Gamma \cup \Delta)$.
- Δ is conflict-free iff there is no $\Delta' \subseteq \Delta$ that attacks Δ .
- Δ is naive iff it is closed and maximally conflict-free.
- Δ defends a set Δ' ⊆ Ab iff for every closed set Θ that attacks Δ' there is Δ" ⊆ Δ that attacks Θ.
- Δ is admissible iff it is closed, conflict-free, and defends every $\Delta' \subseteq \Delta$.
- Δ is complete iff it is admissible and contains every Δ' ⊆ Ab that it defends.
- Δ is grounded iff it is minimally complete.
- Δ is preferred) iff it is maximally admissible.
- ► Δ is stable iff it is closed, conflict-free, and attacks every $\psi \in Ab \setminus \Delta$.

Example Let $\mathfrak{L} = \mathsf{CL}$, $\Gamma = \{p \supset \neg s; p \supset t\}$, and $Ab = \{p, s, t\}$. $\{s\} \longleftrightarrow \{p\} \qquad \{t\}$

 \emptyset , {s}, {t}, {p, t} and {s, t} are admissible. {p} is not admissible since it is not closed.

Example Let $\mathfrak{L} = \mathsf{CL}$, $\Gamma = \{p \supset \neg s; p \supset t\}$, and $Ab = \{p, s, t\}$. $\{s\} \longleftrightarrow \{p\} \qquad \{t\}$

 $\{t\}$, $\{p, t\}$ and $\{s, t\}$ are complete.

Example Let $\mathfrak{L} = \mathsf{CL}, \ \Gamma = \{p \supset \neg s; p \supset t\}, \text{ and } Ab = \{p, s, t\}.$ $\{s\} \longleftrightarrow \{p\} \qquad \{t\}$

 $\{p,t\}$ and $\{s,t\}$ are preferred (and stable).

Example Let $\mathfrak{L} = \mathsf{CL}, \ \mathsf{\Gamma} = \{p \supset \neg s; p \supset t\}, \text{ and } Ab = \{p, s, t\}.$ $\{s\} \longleftrightarrow \{p\} \qquad \{t\}$

 $\{t\}$ is grounded.

Entailment

Definition

Given an assumption-based framework $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$. For Sem $\in \{Grd, Prf, Stb\}$, we denote:

► **ABF**
$$\sim \stackrel{\cap}{_{\mathsf{Sem}}} \psi$$
 iff $\Gamma, \Delta \vdash \psi$ for every $\Delta \in \mathsf{Sem}(\mathsf{ABF})$.

► **ABF**
$$\sim_{\mathsf{Sem}}^{\cup} \psi$$
 iff $\Gamma, \Delta \vdash \psi$ for some $\Delta \in \mathsf{Sem}(\mathsf{ABF})$.

Where $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$, we will also sometimes say that $\Gamma, Ab \models \mathop{\scriptstyle \mathsf{Sem}}^{\star} \psi$ if $ABF \models \mathop{\scriptstyle \mathsf{Sem}}^{\star} \psi$ (for some $\star \in \{\cap, \cup\}$).

14/34

Preferential and Stable Semantics

Preferential and Stable Semantics

Proposition

Let $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$ be a simple contrapositive ABF and $\Delta \subseteq Ab$. Then: Δ is naive iff Δ is stable iff Δ is preferred.

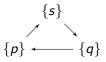
But why?

We [...] note that in every semi-stable labelling of an AF without stable labellings there exists an odd-length cycle whose arguments are all labelled undec [7]

In other words, odd length cycles are in most cases responsible for preferred extensions not being stable.

Example

Suppose that $\mathfrak{L} = \mathsf{CL}$, $\Gamma = \{p \supset \neg s, s \supset \neg q, q \supset \neg p\}$, and $Ab = \{p, q, s\}$.



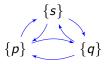
But why?

We [...] note that in every semi-stable labelling of an AF without stable labellings there exists an odd-length cycle whose arguments are all labelled undec [7]

In other words, odd length cycles are in most cases responsible for preferred extensions not being stable.

Example

Suppose that $\mathfrak{L} = \mathsf{CL}$, $\Gamma = \{p \supset \neg s, s \supset \neg q, q \supset \neg p\}$, and $Ab = \{p, q, s\}$.



Relation with MCS

Definition

Let $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$. A set $\Delta \subseteq Ab$ is maximally consistent in ABF, if

- ► $\Gamma, \Delta \not\vdash F$ and
- $\Gamma, \Delta' \vdash F$ for every $\Delta \subsetneq \Delta' \subseteq Ab$.

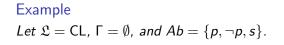
The set of the maximally consistent sets in ABF is denoted $\mathsf{MCS}(\mathsf{ABF})$.

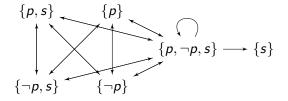
Proposition

Let $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$ be a simple contrapositive ABF and $\Delta \subseteq Ab$. Then: Δ is naive iff Δ is stable iff Δ is preferred iff $\Delta \in MCS(ABF)$

The Grounded Semantics

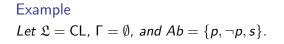
A Problematic Example

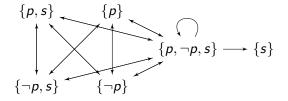




s is an innocent bystander that is not derivable using the grounded extension.

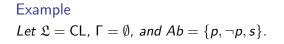
A Problematic Example

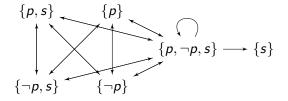




- s is an innocent bystander that is not derivable using the grounded extension.
- Contamination problems.

A Problematic Example



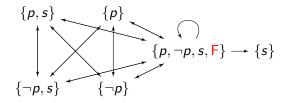


- s is an innocent bystander that is not derivable using the grounded extension.
- Contamination problems.
- No correspondence with maximal consistent subsets.

A simple solution

Add F to Ab.

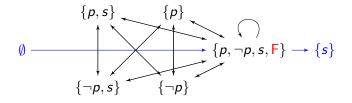
Example (Example 4 continued) Let $\mathfrak{L} = \mathsf{CL}, \Gamma = \emptyset$, and $Ab = \{p, \neg p, s, \mathsf{F}\}$.



A simple solution

Add F to Ab.

Example (Example 4 continued) Let $\mathfrak{L} = \mathsf{CL}, \Gamma = \emptyset$, and $Ab = \{p, \neg p, s, \mathsf{F}\}$.



In Fact:

Theorem

Let $ABF = \langle \mathfrak{L}, \Gamma, Ab, \sim \rangle$ be a simple contrapositive assumption-based framework in which $F \in Ab$. Then $Grd(ABF) = \bigcap MCS(ABF)$.

Interference

Definition

Given a logic $\mathfrak{L} = \langle \mathcal{L}, \vdash \rangle$, let Γ_i (i = 1, 2) be two sets of \mathcal{L} -formulas, and let $\mathsf{ABF}_i = \langle \mathfrak{L}, \Gamma_i, Ab_i, \sim_i \rangle$ (i = 1, 2) be two ABFs based on \mathfrak{L} .

- We denote by Atoms(Γ_i) (i = 1, 2) the set of all atoms occurring in Γ_i.
- We say that Γ₁ and Γ₂ are syntactically disjoint if Atoms(Γ₁) ∩ Atoms(Γ₂) = Ø.
- ABF₁ and ABF₂ are syntactically disjoint if so are Γ₁ ∪ Ab₁ and Γ₂ ∪ Ab₂.
- We denote:

 $\mathsf{ABF}_1 \cup \mathsf{ABF}_2 = \langle \mathfrak{L}, \Gamma_1 \cup \Gamma_2, Ab_1 \cup Ab_2, \sim_1 \cup \sim_2 \rangle.$

An entailment \succ satisfies non-interference, if for every two syntactically disjoint frameworks $ABF_1 = \langle \mathfrak{L}, \Gamma_1, Ab_1, \sim_1 \rangle$ and $ABF_2 = \langle \mathfrak{L}, \Gamma_2, Ab_2, \sim_2 \rangle$ where $\Gamma_1 \cup \Gamma_2$ is consistent, it holds that: $ABF_1 \succ \psi$ iff $ABF_1 \cup ABF_2 \succ \psi$ for every \mathcal{L} -formula $\psi_{\pm}s.t.$ is the second sec

Non-Interference

Theorem

For Sem \in {Naive, Prf, Stb}, both \succ_{Sem}^{\cup} and \succ_{Sem}^{\cap} satisfy non-interference with respect to simple contrapositive assumption-based frameworks.

Theorem

 \sim_{Grd} satisfies non-interference for any simple contrapositive ABF in which $F\in Ab.$

Preferential Entailments

KLM properties

Definition ([6])

A relation \sim between ABFs and formulas is cumulative, if the following conditions are satisfied:

- Cautious Reflexivity (CR): For every ⊢-consistent ψ it holds that ψ ⊢ ψ
- Cautious Monotonicity (CM): If Γ, Ab \> φ and Γ, Ab \> ψ then Γ, Ab, φ \> ψ
- ► Cautious Cut (CC): If Γ , Ab $\succ \phi$ and Γ , Ab, $\phi \succ \psi$ then Γ , Ab $\succ \psi$.
- ► Left Logical Equivalence (LLE): If $\phi \vdash \psi$ and $\psi \vdash \phi$ then Γ , Ab, $\phi \succ \rho$ iff Γ , Ab, $\psi \succ \rho$.
- ► Right Weakening (RW): If $\phi \vdash \psi$ and Γ , Ab $\succ \phi$ then Γ , Ab $\succ \psi$.
- A cumulative relation is preferential, if it satisfies:
 - ► Distribution (OR): If Γ , Ab, $\phi \succ \rho$ and Γ , Ab, $\psi \succ \rho$ then Γ , Ab, $\phi \lor \psi \succ \rho$.

Results for Skeptical Entailments

Proposition

Let $ABF = \langle \mathcal{L}, \Gamma, Ab, \sim \rangle$ be a simple contrapositive ABF. Then $\triangleright_{Sem}^{\cap}$ is preferential for $Sem \in \{Naive, Prf, Stb\}$. If $F \in Ab$, then $\triangleright_{Grd}^{\cap}$ is also preferential.

Results for Credulous Entailments

Example

Let $\mathfrak{L} = \mathsf{CL}$, $\Gamma = \emptyset$, and $Ab = \{r \land (q \supset p), \neg r \land (t \supset p)\}$. Note that:

► MCS(
$$\langle \mathcal{L}, \Gamma, Ab \cup \{q\}, \sim \rangle$$
) =
{{ $r \land (q \supset p), q$ }, { $\neg r \land (t \supset p), q$ }}

$$\mathsf{MCS}(\langle \mathcal{L}, \Gamma, Ab \cup \{t\}, \sim \rangle) = \\ \{\{r \land (q \supset p), t\}, \{\neg r \land (t \supset p), t\}\}$$

$$\mathsf{MCS}(\langle \mathcal{L}, \Gamma, Ab \cup \{q \lor t\}, \sim \rangle) = \\ \{ \{ r \land (q \supset p), q \lor t \}, \{ \neg r \land (t \supset p), q \lor t \} \}$$

Then $Ab, q \succ p$ and $Ab, t \succ p$ but $Ab, q \lor t \not\succ p$ for every entailment of the form \succ_{Sem}^{\cup} where $Sem \in \{Naive, Prf, Stb\}$.

Proposition

Let $ABF = \langle \mathcal{L}, \Gamma, Ab, \sim \rangle$ be a simple contrapositive ABF. Then $\mid \sim_{Sem}^{\cup}$ is cumulative for Sem $\in \{Naive, Prf, Stb\}$.

Discussion (in view of related work)

- Much work has been done on classical respectively Tarskian logic instantiations of Dung argumentation [1, 2, 4, 8].
- However, for ABA such a study was missing.
- For grounded semantics, some care has to be taken (similar problems have been discussed in [5]).
- Other semantics work as expected.
- A benefit of ABA is that for a finite knowledge base we obtain a finite argumentation graph (which is not the case for many other formalisms).

Future work

- Disjunctive attacks (e.g. $\{\neg p \lor \neg q\}$ attacks $\{p, q\}$).
- Closure requirements (turn out to be redundant).
- Modal Logics.

Thank you for your attention Questions?

Bibliography I

- Leila Amgoud and Philippe Besnard.
 Logical limits of abstract argumentation frameworks.
 J. Applied Non-Classical Logic, 23(3):229–267, 2013.
- Ofer Arieli, Annemarie Borg, and Christian Straßer. Argumentative approaches to reasoning with consistent subsets of premises.
 In Proc. IEA/AIE'2017, pages 455–465, 2017.
- Andrei Bondarenko, Phan Minh Dung, Robert Kowalski, and Francesca Toni.

An abstract, argumentation-theoretic approach to default reasoning.

Artif. Intell., 93(1):63-101, 1997.

Bibliography II

Claudette Cayrol.

On the relation between argumentation and non-monotonic coherence-based entailment.

In Proc. IJCAI'95, pages 1443-1448, 1995.

Kristijonas Čyras, Xiuyi Fan, Claudia Schulz, and Francesca Toni.

Assumption-based argumentation: Disputes, explanations, preferences.

Handbook of Formal Argumentation, pages 2407–2456, 2018.

Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1):167–207, 1990.

Bibliography III

Claudia Schulz.

On stable labellings and odd-length cycles in abstract argumentation frameworks.

Srdjan Vesic.

Identifying the class of maxi-consistent operators in argumentation.

Journal of Artificial Intelligence Research, 47:71–93, 2013.